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What's the problem with thick CCDs?

Electrostatics in semiconductor
Electric field lines inside CCD are not straight 2

pixels change their size and shape

Static : edge effects, tree-rings “Dynamic” : brighter-fatter effect
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Consequences of thick CCDs on Image Processing J
Robert Lupton
Princeton Universi




Astrometry is mapping from pixel
coordinates to the sky
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Need to account for magnification, shear and rotation



Workshop “Precision Astronomy with Fully
Depleted CCDs” at BNL 18-19 Nov 2013

Goals:

Bring together people working on instruments, algorithms and
science

Bring together current and future experiments

Over 70 participants from 32 institutions, 14 from outside the US
20 talks and 8 posters 2> Proceedings in JINST
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Workshop “Precision Astronomy with Fully
Depleted CCDs” at BNL 18-19 Nov 2013

Formed a working group (Astier, Bernstein, Jarvis, Lupton, Magnier,
Miyazaki, Nomerotski, O’Connor, Peterson, Stubbs)

Communications between experiments

Bridging sensors, algorithms and science

Regular general phone meetings = another workshop in fall 2014
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* Encouraging that one can understand these
effects from the telescope data

Gary’s talk: DES data

e But better to study them under controlled
conditions of the lab BEFORE the detector go to

telescope

Andrei’s talk: LSST sensor testing and
simulations



Andrei’s talk Outline

* |nstrumental effect related to sensors
— Brighter Fatter, tree rings and edge effects

* How we plan to address this in LSST
— Lab measurements
— Simulations of sensor effects
— Systematics due to sensor effects



LSST Sensors

Science sensors

— Good prototypes from e2v and
ITL; First articles ordering in
progress

Production in 2015 - 2019

— Sensor acceptance testing and

raft assembly in BNL and LPNHE
(Paris)

— Raftintegration in camera
cryostat at SLAC

Testing labs: careful
characterization of sensors
(beyond acceptance testing)

— BNL (includes raft

characterization); Harvard;
LPNHE; UC Davis

CCD250
-

Raft Tower Module



Fast progress towards LSST raft

* Raft test cryostat with full signal chain in operation in BNL since Feb 2014
— So far a single CCD

* Raftisa9-CCD, 144 Mpix camera
— planned as LSST Commissioning Camera in 2019-2020
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Single-CCD image from Raft Test Cryostat LSST BNL team



Edge Effects in CCDs
* On the egde:

— Non-linearity up to 50%
— Ellipticity up to 20%

DES saw similar effects
— Also for cosmic muons

DECam @ CTIO
Muons do not bend!
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Spot flux does not trace flatfield flux
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Intensity Dependence: Brighter-Fatter Effect

Si thickness
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Charge smearing perturbs photon
transfer curve

variance (ADU)
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IN2P3 team, LSST sensor data



Signal Correlation in Neighbouring Pixels

correlation CCD E2V @ 73ke amp. #4
Entries 24

2
pixel }

0
2-d autocorrelation at 73Ke, half of full well depth, (Harvard & IN2P3 analysis)




Brighter-Fatter Effect and Pixel Correlations

— Phenomenological approach using parameters from

correlation matrices, can provide corrections

Depending on the stored
charge, electrons drifting
here go left or right

field lines
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FIG.5) Photoscan-
ning measurement
on a wafer surface.
The structure seen
is the gradient of
the resistance
distribution.

“Tree rings”

THE PRODUCTION AND AVAILABILITY OF HIGH RESISTIVITY SILICON
FOR DETECTOR APPLICATION

Wilfried von AMMON and Heinz HERZER
Wacker -Chemitronic GmbH, 8263 - Burghausen, Fed. Rep. Germany

Nuclear Instruments and Methods in Physics Research 226 (1984) 94-102
North-Holland, Amsterdam
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A Material Innovation for the Electronic Industry:

Float Zone Single Crystal Silicon with 200mm
Diameter

Wacker Siltronic AG, D-84489 Burghausen, Germany

L.Altmannshofer, M.Grundner, J.Virbulis, J.Hage
'=__J__.1 e-mail: Manfred.Grundner@Wacker.com
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Tree rings arise due to resistivity variation

Fig. 4.1Single crystal growth by the floating zone technique.
From S.Holland’s talk at BNL workshop



Lateral E Field from tree rings
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Proper electrostatic simulations
can be done but need to know
sensor geometry/doping

Fig. 3. The E, component for “sharp” and Gaussian transitions of the doping profile.



LSST ITL sensors: 415 pixel structure
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Pixel physical size distortions due to masks?
— Period 41 pixel x 10 micron =410 micron

— DALSA used electron beam mask writer, could it be DAC differential
non-linearity? Old sensors had laser-written mask and did not have this

— Weak dependence on bias, no wavelength dependence



Same effect in DES

Same vendor (DALSA)

27.333 pixel periodic modulation seen in dome flats
27.333 x 15 micron =410 micron : same period as LSST
Is it purely photometric?

+1@ip 53 g flat, median-fold at 82 pix period after flattening
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LSST: sensor simulations with Phosim

* Phosim (J.Peterson et al) : simulating telescopes one photon at a time
— Instrumental effects include atmosphere, optics and sensors

 Good way to connect sensors to precision astrophysics

* Validate sensor part by simulations of lab setups and comparison to
measurements
— Most of sensor effects are now implemented in Phosim

Use tuned simulations to evaluate sensor effects on
science (can turn physics on/off)



Low Altitude
All Atmosphere

Diffraction

Optics Design Dome Seeing
All Instrument
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Modeling Charge Diffusion

Incidence angle

14° 24°

* Finite range in Si
produces a skewed PSF
that is fundamentally
3D and depends on
interface properties

Final medium
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* PSF dependence on
angle and interface for
1000nm
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Example: Evaluating contributions to shear
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Absolute spurious shear correlation function after combining 10 years of r- and i-

band LSST data; PSF knowledge from polynomial interpolation of stars

Requirements for weak lensing : shear correlation systematics are controlled
to ~30% of the stochastic levels, or < 2x10 for <1’ and <1x107 for 6>5’.



Current work on sensor effects in Phosim
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— Validation of charge diffusion and charge
sharing models

— Correlations in simulated flats; Compare to data
Tree rings
— Tuning doping variations, code validation

Description of lab setups at UC Davis (Tyson)
and BNL
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Summary

* Fully depleted CCD have a non-trivial
electrostatics which lead to astrometric biases
and PSF distortions (+ other important sensor
effects)

e LSST has a comprehensive program to study
these effects in the lab & simulations and their
importance for science



Backups



Fringes
Interference patterns

due to reflections off the

sensor bottom, visible at
longer wavelengths

Use a random surface
with some flatness

Will use BNL metrology
data to validate

Assumes that the
backside is flat

— Fringe data at different
wavelengths should
allow to extract the
backside flatness

Simulation Data
0.4% rms 1.2% rms w/ lab beam
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Brick-wall pattern

* From laser annealing
of back side, visible
at short wavelength

* Described in PhoSim
with 11 parameters

* Needs tuning

Simulation Data

6% rms at 350 nm 3% rms at 350 nm
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